Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38386434

RESUMO

Background: No published data are available on the use of the community-derived open-source Loop hybrid closed-loop controller ("Loop") by individuals with type 2 diabetes (T2D). Methods: Through social media postings, we invited individuals with T2D currently using the Loop system to join an observational study. Thirteen responded of whom seven were eligible for the study, were using the Loop algorithm, and provided data. Results: Mean (±standard deviation) age was 61 ± 13 years, and mean body mass index was 31 ± 5 kg/m2. All but one participant were using noninsulin glucose-lowering medications. Self-reported mean hemoglobin A1c decreased from 7.3% ± 1.1% before starting Loop to 6.0% ± 0.5% on Loop. Time in range 70-180 mg/dL increased from 84% to 93%. The amount of time in hypoglycemia was extremely low before and with Loop (time <54 mg/dL was 0.04% ± 0.06% vs. 0.09% ± 0.07%, respectively). No severe hypoglycemia or diabetic ketoacidosis events were reported while using Loop. Conclusion: These data, though limited, suggest that the Loop system is likely to be effective when used by individuals with T2D and should be evaluated in large-scale studies. Clinical Trial Registration numbers: NCT05951569.

2.
BMC Neurosci ; 16: 48, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232001

RESUMO

BACKGROUND: Inflammation following intracerebral hemorrhage (ICH) significantly contributes to secondary brain damage and poor outcomes. Prostaglandin E2 (PGE2) is known to modulate neuroinflammatory responses and is upregulated in response to brain injury as a result of changes in inducible cyclooxygenase 2 (COX-2) and the membrane-bound type of PGE synthase. Inhibition of COX-2 activity has been reported to attenuate ICH-induced brain injury; however, the clinical utility of such drugs is limited due to the potential for severe side effects. Therefore, it is now important to search for downstream targets capable of preferentially modulating PGE2 signaling, and the four E prostanoid receptors, EP1-4, which are the main targets of PGE2, remain a viable therapeutic option. We have previously shown that EP1 receptor deletion aggravates ICH-induced brain injury and impairs functional recovery, thus the current study aimed to elaborate on these results by including a pharmacologic approach targeting the EP1 receptor. RESULTS: Chronic post-treatment with the selective EP1 receptor antagonist, SC-51089, increased lesion volume by 30.1 ± 14.5% (p < 0.05) and treatment with the EP1 agonist, 17-pt-PGE2, improved neuromuscular functional recovery on grip strength (p < 0.01) and hanging wire (p < 0.05) behavioral testing. To begin identifying the mechanisms involved in EP1-mediated neuroprotection after ICH, histology was performed to assess ferric iron content, neuroinflammation, leukocyte transendothelial migratory potential, and peripheral neutrophil and immunoglobulin infiltration. Following ICH, mice treated with the antagonist displayed increased ferric iron (p < 0.05) and cortical microgliosis (p < 0.05), whereas treatment with the agonist decreased cortical (p < 0.01) and striatal (p < 0.001) astrogliosis, leukocyte transendothelial migratory potential (p < 0.01), neutrophil infiltration (p < 0.05), and blood brain barrier breakdown (p < 0.05). CONCLUSIONS: In agreement with our previous results, selective antagonism of the EP1 receptor aggravated ICH-induced brain injury. Furthermore, EP1 receptor agonism improved anatomical outcomes and functional recovery. Thus, the present data continues to reinforce a putative role for EP1 as a new and more selective therapeutic target for the treatment of ICH that could reduce the side effects associated with COX-2 inhibition while still exploiting the beneficial effects.


Assuntos
Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Receptores de Prostaglandina E Subtipo EP1/agonistas , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/patologia , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Colagenases , Modelos Animais de Doenças , Gliose/tratamento farmacológico , Gliose/imunologia , Gliose/patologia , Hidrazinas/farmacologia , Ferro/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Fármacos Neuroprotetores/farmacologia , Oxazepinas/farmacologia , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...